3d Maths Cheat Sheet

Vectors

Vector Addition

The sum of 2 vectors completes the triangle.

Unit Vectors - "Normalised" Vectors
Used to represent a direction or normal. Length of 1 .
$\hat{A}=\frac{\vec{A}}{\|\vec{A}\|}$
Where \| $\vec{A} \|$ is the length or magnitude of \vec{A}.

Dot Product of 2 Vectors

Can be used to get the angle between 2 vectors.
$\vec{A} \cdot \vec{B}=\sum_{i=1}^{n} A_{i} B_{i}=A_{1} B_{1}+A_{2} B_{2}+\cdots+A_{n} B_{n}$
The dot product returns a single scalar value. $\theta=\arccos (\hat{A} \cdot \hat{B})$
$\theta=\arccos \left(\frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\|\|\vec{B}\|}\right)$
Where arccos is inverse cosine $\cos ^{-1}$

Cross Product of 2 Vectors

Produces a vector perpendicular to the plane containing the 2

$\mathrm{N}=$ normalize (cross (A, B));

Matrices

Identity Matrix

All 0, except the top-left to bottom-right diagonal.
$I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
if $A B=I$ then A is the inverse of B and vice versa.
Matrix * Vector
$\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}a x+b y+c z \\ d x+e y+f z \\ g x+h y+i z\end{array}\right]$

Matrix * Matrix

Each cell (row, col) in AB is:
$\sum_{i=1}^{n} A($ row, 1$) * B(1, \mathrm{col})+\cdots+A($ row,$n) * B(n, \mathrm{col})$
Where n is dimensionality of matrix.
$A B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$

(rows of A with columns of B)

Matrix Determinant

For a 2×2 or 3×3 matrix use the Rule of Sarrus; add products of top-left to bottom-right diagonals, subtract products of opposite diagonals.
$M=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ Its determinant $|M|$ is:
$|M|=a e i+b f g+c d h-c e g-b d i-a f h$
For 4×4 use Laplace Expansion; each top-row value * the 3×3 matrix made of all other rows and columns:
$|M|=a M_{1}-b M_{2}+c M_{3}-d M_{4}$
See http://www.euclideanspace.com/maths/algebra/matrix/ functions/determinant/fourD/index.htm

Matrix Transpose

Flip matrix over its main diagonal. In special case of orthonormal xyz matrix then inverse is the transpose. Can use to switch between row-major and column-major matrices.
$M=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] M^{T}=\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right]$

Matrix Inverse

Use an inverse matrix to reverse its transformation, or to transform relative to another object.
$M M^{-1}=I$ Where I is the identity matrix.
If the determinant of a matrix is 0 , then there is no inverse. The inverse can be found by multiplying the determinant with a large matrix of cofactors. For the long formula see
http://www.cg.info.hiroshima-cu.ac.jp/~miyazaki/
knowledge/teche23.html
Use the transpose of an inverse model matrix to transform normals: $n^{\prime}=n\left(M^{-1}\right)^{T}$

Homogeneous Matrices

Row-Order Homogeneous Matrix

Commonly used in Direct3D maths libraries
$v^{\prime}=\left[\begin{array}{llll}V_{x} & V_{y} & V_{z} & 1\end{array}\right]\left[\begin{array}{cccc}X_{x} & X_{y} & X_{z} & 0 \\ Y_{x} & Y_{y} & Y_{z} & 0 \\ Z_{x} & Z_{y} & Z_{z} & 0 \\ T_{x} & T_{y} & T_{z} & 1\end{array}\right]$

Column-Order Homogeneous Matrix

Commonly used in OpenGL maths libraries
$v^{\prime}=\left[\begin{array}{cccc}X_{x} & Y_{x} & Z_{x} & T_{x} \\ X_{y} & Y_{y} & Z_{y} & T_{y} \\ X_{z} & Y_{z} & Z_{z} & T_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}V_{x} \\ V_{y} \\ V_{z} \\ 1\end{array}\right]$

Translation, Scaling, and Rotation

column order $T=\left[\begin{array}{cccc}1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1\end{array}\right] S=\left[\begin{array}{cccc}S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

R_{x}	$=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) & 0 \\ 0 & \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ (column-order)
R_{y}	$=\left[\begin{array}{cccc}\cos (\theta) & 0 & \sin (\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin (\theta) & 0 & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ (column-order)
R_{z}	$=\left[\begin{array}{cccc}\cos (\theta) & -\sin (\theta) & 0 & 0 \\ \sin (\theta) & \cos (\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ (column-order)

View Matrix
$V=\left[\begin{array}{cccc}R_{x} & R_{y} & R_{z} & -P_{x} \\ U_{x} & U_{y} & U_{z} & -P_{y} \\ -F_{x} & -F_{y} & -F_{z} & -P_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$ (column-order)
Where U is a vector pointing up, F forward, and P is world position of camera.

$$
\text { Bird's-eye view } V=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Projection Matrix
$P=\left[\begin{array}{cccc}S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & P_{z} \\ 0 & 0 & -1 & 0\end{array}\right]$ (column-order)
$S_{x}=(2 *$ near $) /($ range $*$ aspect + range $*$ aspect $)$
$S_{y}=$ near $/$ range
$S_{z}=-(f a r+n e a r) /($ far - near $)$
$P_{z}=-(2 *$ far $*$ near $) /($ far - near $)$
range $=\tan ($ fov $/ 2) *$ near

evision 4. 5 Oct 2012

Dr Anton Gerdelan, apg@scss.tcd.ie, Trinity College Dublin, Ireland. ATEX template from http://www.stdout.org/~winston/latex/ Thanks Michaël, Amoss, and Veronica!

