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Optimisation Guidelines

● “Don't optimise early”
● Don't optimise unless it's definitely too slow
● Find bottlenecks
● Measure improvements objectively
● Simple and slower > complex and faster



  

Finding Bottlenecks

Mortal Kombat



  

Adding FPS Counter

● Hz
● #draw calls per frame
● #uniform updates per frame
● #vertices or triangles per frame
● Run-time feedback on perf of current scene
● Q. What is the problem with using this system to 

guide optimisation?



  

CPU / Memory / Cache Profiling

● Add your own timers around blocks of interest
● Profiling tools

– Gprof (GNU)
– Visual Studio profiler
– AMD Code Analyst and CodeXL
– Intel VTune
– Valgrind (memory leaks etc.), Cachegrind

● Finds heavy functions
● Finds small functions called a huge number of times
● Q. Why might this all be misleading for us?



  

GPU Profiling

● A. Asynchronous processing on the GPU!
● apitrace with qapitrace
● VOGL (Valve)
● AMD CodeXL
● NVIDIA Perfkit, PerfHUD, Nsight
● Use OpenGL timer queries http://docs.gl/gl4/glQueryCounter
● NB Results specific to hardware and driver version!

http://docs.gl/gl4/glQueryCounter


  

Types of Optimisation

Most of the optimisations that I have made have 
made performance slightly worse and hugely 

increased complexity

The best optimisations are the simplest ones



  

Types of optimisation

● Effectively using built-in 
or available algorithms
– Back-face culling
– Clipping
– Early z-reject (vs. overdraw)
– Hardware occlusion culling

● Q. Why isn't clipping a 
perfect optimisation?

Overdraw: >1 fragment per pixel



  

The Problem with Clipping

● What gets computed 
before clipping removes 
out-of-shot geometry?



  

Types of optimisation

● Scene management
– Scene graphs
– Quad-tree, oct-tree
– Frustum intersections
– Portal culling
– Tile-based



  

Types of optimisation

● Data-oriented design
– Memory is now really slow relative to CPU
– Arrays and loops instead of lists, object instances, 

encapsulated data
– Re-arrange data access to fit better in one cache width
– Dice: Introduction to DOD 

http://dice.se/wp-content/uploads/Introduction_to_Data-Oriented_Design.pdf

http://dice.se/wp-content/uploads/Introduction_to_Data-Oriented_Design.pdf


  

Types of optimisation

● GPU usage
– Batching geometry
– Instanced drawing
– Uniform Buffer Objects

(share common uniforms between shaders)
– Hardware tessellation
– Reduce branching in shaders
– Shorter fragment shaders
– Q. Why are Frag.S more likely the bottleneck than Vert.S?



  

Types of optimisation

● CPU usage
– sqrt()

– Big O complexity: Loops within loops.
– Threading – not so useful
– Profiling
– Small functions used many times

● inline them (either by keyword or manually)



  

Uniform Buffer Object (UBO)

● Uniforms shared between many shaders
– Camera matrices
– Light position, colour, etc.

● Have an incidental overhead cost when camera moves
– glUniformMatrix4fv() - repeat for all shaders

● UBO
– bind each shader to a UBO
– update a single buffer with camera matrices
– shaders then refer to the same memory for the uniforms

● Short example in my tutorial book



  

Batching

● Many small, static objects in scene that use same shader, texture, etc.
● Each object requires a separate draw call
● Not making good use of GPU parallelism
● Combine into fewer, larger objects
● Art or pre-processing code into VBOs
● Balancing act with other optimisations
● Nvidia “Batch, batch, batch” (GDC ...~2007?) 

http://www.nvidia.com/docs/IO/8228/BatchBatchBatch.pdf

http://www.nvidia.com/docs/IO/8228/BatchBatchBatch.pdf


  

Hardware Instancing

● Similar to batching except don't combine
● Less memory used
● Can move independently via array of uniforms
● glDrawArraysInstanced(...,num_instances)
● To move each to a separate position

uniform mat4 M[MAX_INSTANCES];

gl_Position = P * V * M[gl_InstanceID] * v;



  

Spatial Data Structures

● Create structure: Divide 3d scene up somehow
– Lists of visible items in nodes or for different views
– Reduce list of items to traverse for visibility

● Traverse based on camera pos,angle for visibility
● Test items against camera frustum for visibility

– Extract frustum planes
● Reference: “Real Time Rendering”, chapter 14



  

Bounding Volumes

● Approximate mesh by a bounding sphere, or box.
– Sphere
– AABB – axis-aligned bounding box
– OBB – oriented bounding box

● Easier to test against than all triangles in a mesh



  

Binary Space Partitioning (BSP)

● Recursively sub-divide 3d space 
in half by a plane
– 1. In front of current plane
– 2. Behind current plane
– Creates a sorted front-to-back 

binary tree
– Used in Doom before depth 

buffer existed to sort by depth
– When traversing each sector 

knows if it is in-front or behind of 
A...etc.

In-front of A

Diagram (also a nice article) on Wikipedia



  

Oct-Tree, Quad-Tree, k-d Tree

● Creating:
– Box covering entire scene
– If >1 object in box, split into 4 

boxes
– Recurse

● Traversing:
– test main box for visibility
– recurse with sub-boxes 

● Draw all items in visible boxes

Oct -Tree Source: GPU Gems 2, Ch.37



  

Frustum Cull: A Test for Visibility

● Extract planes from frustum shape
● Test all bounding volumes (or quad-

tree boxes) against frustum planes
● For each plane:

– dot product of plane's inward normal  
with

– distance to a point on the object
– If < 0.0  FAIL TEST→

● Q. What unseen geometry is still 
not removed despite oct-tree and a 
frustum?

Source: Lighthouse3D



  

Hardware Occlusion Culling

● Split objects into
– Big “occluders”
– Small “occludees”

● Draw all occluders
● BeginQuery()
● Draw bounding box of each 

occludee
● EndQuery()
● Before drawing occludees, check 

#samples visible in its query

Query returned 600 “samples”

Query returned 0 “samples”
=Don't draw



  

Summary

● Find bottlenecks first
● Determine simplest improvements first
● i.e. Too many draws

– Can I just test if objects are behind camera?
– Is a spatial structure like quad-tree appropriate for my scene?
– Is a frustum culling function appropriate for my camera?
– Would batching or instancing be a good idea?

● Are my bottlenecks and rendering rate actually acceptable?
i.e. if so don't touch it



  

Advanced Data Buffers



  

Portal Culling
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