

Multi-Pass

Anton Gerdelan gerdela@scss.tcd.ie
Trinity College Dublin

Optimised

mailto:gerdela@scss.tcd.ie

Optimisation Guidelines

● “Don't optimise early”
● Don't optimise unless it's definitely too slow
● Find bottlenecks
● Measure improvements objectively
● Simple and slower > complex and faster

Finding Bottlenecks

Mortal Kombat

Adding FPS Counter

● Hz
● #draw calls per frame
● #uniform updates per frame
● #vertices or triangles per frame
● Run-time feedback on perf of current scene
● Q. What is the problem with using this system to

guide optimisation?

CPU / Memory / Cache Profiling

● Add your own timers around blocks of interest
● Profiling tools

– Gprof (GNU)
– Visual Studio profiler
– AMD Code Analyst and CodeXL
– Intel VTune
– Valgrind (memory leaks etc.), Cachegrind

● Finds heavy functions
● Finds small functions called a huge number of times
● Q. Why might this all be misleading for us?

GPU Profiling

● A. Asynchronous processing on the GPU!
● apitrace with qapitrace
● VOGL (Valve)
● AMD CodeXL
● NVIDIA Perfkit, PerfHUD, Nsight
● Use OpenGL timer queries http://docs.gl/gl4/glQueryCounter
● NB Results specific to hardware and driver version!

http://docs.gl/gl4/glQueryCounter

Types of Optimisation

Most of the optimisations that I have made have
made performance slightly worse and hugely

increased complexity

The best optimisations are the simplest ones

Types of optimisation

● Effectively using built-in
or available algorithms
– Back-face culling
– Clipping
– Early z-reject (vs. overdraw)
– Hardware occlusion culling

● Q. Why isn't clipping a
perfect optimisation?

Overdraw: >1 fragment per pixel

The Problem with Clipping

● What gets computed
before clipping removes
out-of-shot geometry?

Types of optimisation

● Scene management
– Scene graphs
– Quad-tree, oct-tree
– Frustum intersections
– Portal culling
– Tile-based

Types of optimisation

● Data-oriented design
– Memory is now really slow relative to CPU
– Arrays and loops instead of lists, object instances,

encapsulated data
– Re-arrange data access to fit better in one cache width
– Dice: Introduction to DOD

http://dice.se/wp-content/uploads/Introduction_to_Data-Oriented_Design.pdf

http://dice.se/wp-content/uploads/Introduction_to_Data-Oriented_Design.pdf

Types of optimisation

● GPU usage
– Batching geometry
– Instanced drawing
– Uniform Buffer Objects

(share common uniforms between shaders)
– Hardware tessellation
– Reduce branching in shaders
– Shorter fragment shaders
– Q. Why are Frag.S more likely the bottleneck than Vert.S?

Types of optimisation

● CPU usage
– sqrt()

– Big O complexity: Loops within loops.
– Threading – not so useful
– Profiling
– Small functions used many times

● inline them (either by keyword or manually)

Uniform Buffer Object (UBO)

● Uniforms shared between many shaders
– Camera matrices
– Light position, colour, etc.

● Have an incidental overhead cost when camera moves
– glUniformMatrix4fv() - repeat for all shaders

● UBO
– bind each shader to a UBO
– update a single buffer with camera matrices
– shaders then refer to the same memory for the uniforms

● Short example in my tutorial book

Batching

● Many small, static objects in scene that use same shader, texture, etc.
● Each object requires a separate draw call
● Not making good use of GPU parallelism
● Combine into fewer, larger objects
● Art or pre-processing code into VBOs
● Balancing act with other optimisations
● Nvidia “Batch, batch, batch” (GDC ...~2007?)

http://www.nvidia.com/docs/IO/8228/BatchBatchBatch.pdf

http://www.nvidia.com/docs/IO/8228/BatchBatchBatch.pdf

Hardware Instancing

● Similar to batching except don't combine
● Less memory used
● Can move independently via array of uniforms
● glDrawArraysInstanced(...,num_instances)
● To move each to a separate position

uniform mat4 M[MAX_INSTANCES];

gl_Position = P * V * M[gl_InstanceID] * v;

Spatial Data Structures

● Create structure: Divide 3d scene up somehow
– Lists of visible items in nodes or for different views
– Reduce list of items to traverse for visibility

● Traverse based on camera pos,angle for visibility
● Test items against camera frustum for visibility

– Extract frustum planes
● Reference: “Real Time Rendering”, chapter 14

Bounding Volumes

● Approximate mesh by a bounding sphere, or box.
– Sphere
– AABB – axis-aligned bounding box
– OBB – oriented bounding box

● Easier to test against than all triangles in a mesh

Binary Space Partitioning (BSP)

● Recursively sub-divide 3d space
in half by a plane
– 1. In front of current plane
– 2. Behind current plane
– Creates a sorted front-to-back

binary tree
– Used in Doom before depth

buffer existed to sort by depth
– When traversing each sector

knows if it is in-front or behind of
A...etc.

In-front of A

Diagram (also a nice article) on Wikipedia

Oct-Tree, Quad-Tree, k-d Tree

● Creating:
– Box covering entire scene
– If >1 object in box, split into 4

boxes
– Recurse

● Traversing:
– test main box for visibility
– recurse with sub-boxes

● Draw all items in visible boxes

Oct -Tree Source: GPU Gems 2, Ch.37

Frustum Cull: A Test for Visibility

● Extract planes from frustum shape
● Test all bounding volumes (or quad-

tree boxes) against frustum planes
● For each plane:

– dot product of plane's inward normal
with

– distance to a point on the object
– If < 0.0 FAIL TEST→

● Q. What unseen geometry is still
not removed despite oct-tree and a
frustum?

Source: Lighthouse3D

Hardware Occlusion Culling

● Split objects into
– Big “occluders”
– Small “occludees”

● Draw all occluders
● BeginQuery()
● Draw bounding box of each

occludee
● EndQuery()
● Before drawing occludees, check

#samples visible in its query

Query returned 600 “samples”

Query returned 0 “samples”
=Don't draw

Summary

● Find bottlenecks first
● Determine simplest improvements first
● i.e. Too many draws

– Can I just test if objects are behind camera?
– Is a spatial structure like quad-tree appropriate for my scene?
– Is a frustum culling function appropriate for my camera?
– Would batching or instancing be a good idea?

● Are my bottlenecks and rendering rate actually acceptable?
i.e. if so don't touch it

Advanced Data Buffers

Portal Culling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

